
Missed Opportunities in Preventing Hospital
Readmissions: Redesigning Post-Discharge

Checkup Policies

Xiang Liu*
Department of Industrial and Operations Engineering, University of Michigan, 1205 Beal Avenue, Ann Arbor, Michigan 48109, USA,

liuxiang@umich.edu

Michael Hu
Operations Research Center, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA,

hum@mit.edu

Jonathan E. Helm
W. P. Carey School of Business, Arizona State University, 300 E Lemon Street, Tempe, Arizona 85287, USA, jehelm2@asu.edu

Mariel S. Lavieri
Department of Industrial and Operations Engineering, University of Michigan, 1205 Beal Avenue, Ann Arbor, Michigan 48109, USA,

lavieri@umich.edu

Ted A. Skolarus
Department of Urology, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, Michigan 48109, USA,

tskolar@med.umich.edu

H ospital readmissions affect hundreds of thousands of patients every year, negatively impacting patients and plac-
ing a tremendous burden on the national healthcare system. Post-discharge checkup policies can reduce readmis-

sions through early detection of health conditions, however, the methods behind designing effective checkup policies
are poorly understood. Under current practice, up to 67% of readmitted patients return to the hospital before their first
scheduled office visit. This work aims to develop effective checkup plans to monitor patients following hospital dis-
charge, using a variety of checkup methods, including phone calls and office visits. We develop and analyze a new
delay-time analysis model to identify the optimal type and timing of checkups to implement post-discharge monitoring
plans. By analyzing the structure of optimal policies, we develop checkup schedules that can detect up to 43.7% more
readmission-causing conditions experienced by readmission-bound patients. Further, we uncover simple rules of thumb
that can help doctors design and improve monitoring plans even in the absence of advanced computer software or com-
plex computations.
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1. Introduction

In the United States, hospital readmissions are heavily
scrutinized as a driver of healthcare costs. According
to Weinberger et al. (1996), up to half of all hospital-
izations are readmissions. Furthermore, it is estimated
that up to 75% of all readmissions are preventable
by patient education, pre-discharge assessment, and
domiciliary aftercare (Benbassat and Taragin 2000). In
effect, preventable hospital readmissions represent
approximately $25 billion in annual healthcare costs
(PwC Health Research Institute 2010). One in eight

Medicare patients are readmitted within 30 days of
discharge after surgery (Dartmouth Atlas Project
2013), and 56.5% of readmitted Medicare patients are
readmitted through the Emergency Department (ED)
(Kocher et al. 2013), contributing to high costs. These
readmissions represent not only preventable health-
care costs, but also a tremendous burden on patients
and their families.
In order to address this problem, policies such as

the Affordable Care Act (ACA) have been imple-
mented (Koh and Sebelius 2010). Following the
ACA, the Centers for Medicare and Medicaid
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Services (CMS) now penalize hospitals with worse
than expected 30-day readmission rates (Joynt and
Jha 2012). For example, Section 3025 of the Afford-
able Care Act added Section 1886(q) to the Social
Security Act establishing the Hospital Readmissions
Reduction Program. This program requires CMS to
reduce payments to the Inpatient Prospective Pay-
ment System (IPPS) hospitals beginning in October
2012 (James 2013). These circumstances encourage
healthcare professionals to more actively search for
and implement solutions to minimize hospital read-
missions (Wong et al. 2013).
Numerous interventions have been proposed to

prevent readmissions (including better pre-discharge
care and improved discharge instructions). Post-
discharge checkups such as phone calls, home visits,
and office visits have been independently shown in
the clinical literature to significantly reduce hospital
readmissions (Dudas et al. 2001, Wong et al. 2013)
and offset increases in demand for physician services
(Green et al. 2013). The purpose of these checkups is
to detect developing conditions before they worsen
and cause either an unnecessary trip to the ED and/
or an inpatient readmission.
Although checkups can mitigate the readmissions

crisis, the methods behind designing effective checkup
policies are poorly understood. Specifically, health-
care providers remain uncertain about how many
checkups to schedule, what types of checkups to
schedule, and when to schedule those checkups. In
practice, checkup policies currently implemented by
hospitals are designed and based on unsupported
heuristics. For example, current practice recommends
that doctors first follow-up with cystectomy (a major
surgery for bladder cancer) patients with an office
visit approximately 2 weeks after their hospital dis-
charge; however, 40% of readmitted cystectomy
patients are readmitted within 1 week of discharge,
and as many as 67% of readmitted cystectomy patients
are already readmitted before the first scheduled
office visit (Hu et al. 2014, Skolarus et al. 2015). Our
research seeks to reclaim this missed opportunity by
identifying the optimal timing as well as the type of
checkups to perform after discharge. It also provides
guidance for how many visits would be most effec-
tive. This will give healthcare professionals (both clin-
icians and non-physicians) an increased chance of
detecting a patient’s health condition before it causes
a readmission.
Because most hospitals do not yet have a system-

atized mechanism for managing follow-ups for their
cohort of patients, much of the follow-up decision
making is left to the treating surgeon, and it is typi-
cally determined on a case-by-case basis. This work
seeks to improve the efficacy of these personalized
follow-up plans. This approach has been confirmed

as having low barriers to implementation relative to a
larger scale, system-wide approach that considers
costs and savings relative to total hospital resources.
This is because medical professionals currently make
decisions on a per-patient basis (hence no major
culture change required) by weighing the expected
benefit (e.g., early detection, readmission reduction,
improved quality, etc.) vs. the amount of time the
practice is able/willing to commit to follow-ups.
Cost-based calculations are not frequently used in
these individual patient decisions, in part because it is
difficult to assign a monetary value to early detection
of a condition. This study provides analytical, data-
based methods and decision guidelines (medical
professionals are comfortable with both) to better per-
sonalize these decisions that doctors already make on
a daily basis.
To provide contextual grounding for our practice-

focused readmission detection approach, we develop
our models in close collaboration with a urological
practice, with a focus on cystectomy, which is one of
the highest readmission rate surgeries in the United
States. Other papers have shown similarities in the
readmission characteristics of cystectomy patients and
other types of surgical patients (Jacobs et al. 2017). This
approach could hence be generalizable to other types
of surgery and other patient conditions by changing
the model parameterization based on historical data,
as long as the processes for follow-ups and underlying
disease dynamics remain similar. More information
about the key assumptions that must be verified before
applying our models to other diseases is provided in
subsequent sections.
The post-discharge monitoring process after cystec-

tomy proceeds as follows. At the time of discharge, a
monitoring schedule is determined by the discharge
team and the patient is made aware of when they will
be receiving phone calls and when they are scheduled
to return for an office visit to check on their recovery.
During a phone call or office visit, the patient will be
tested to see if they have developed a condition that is
likely to lead to readmission. For cystectomy, the two
most common conditions are infection and failure to
thrive (unable to eat enough food), which account for
the majority of readmissions (see Hu et al. 2014,
Skolarus et al. 2015). These conditions exhibit impor-
tant characteristics that are suited to early detection
and mitigation: (i) these types of conditions are read-
ily detectable via phone call, telemedicine, or office
visit, (ii) the window for detection is long enough to
make a follow-up potentially effective (e.g., patients
stay at home with an infection for several days before
becoming sick enough for readmission), and (iii) early
detection can be effective in mitigating the condition
on an outpatient basis or at the very least result in a
reduced cost ED visit or readmission (e.g., providing
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antibiotics to treat infection, or early detection means
the condition is less serious when treatment begins
leading to reduced cost and better patient outcomes).
If a condition is detected early by a follow-up, steps

to mitigate the condition can be immediately under-
taken. These steps can include starting antibiotics to
eliminate infection, or IV treatment for patients suffer-
ing from failure to thrive. Hence, early detection may
avoid the readmission entirely, prevent an expensive
ED visit, or at the very least lessen the time and cost
of overcoming the condition while improving the
quality of the outcome by catching the condition
before it becomes too severe. At the suggestion of our
clinical collaborator, we do not attempt to directly
quantify the monetary value of such outcomes in our
model, but instead leave the decision to the clinician/
practice as to the amount of follow-up effort that is
reasonable relative to the increased likelihood of early
detection.
To capture this personalized follow-up process,

we develop a delay-time modeling approach adapted
from the machine maintenance literature to analyze
and optimize post-discharge checkup policies. Several
unique features of readmission dynamics require new
extensions of the traditional framework, providing
new insights into the structure of delay-time machine
maintenance problems and broadening the scope
of problems in which delay-time analysis can be
applied. In addition to theoretical implications, this
study contributes beneficial insights for physicians
and other healthcare decision makers to help them
improve post-discharge monitoring for patients.
As a proof of concept, we calibrate, test, and vali-

date our models on nationwide data for cystectomy
patients. Cystectomy, often performed on bladder
cancer patients, is a type of surgery that involves
removal of all or part of the urinary bladder. Cystec-
tomy patients experience one of the highest readmis-
sion rates of any surgery, as approximately 25% of
cystectomy patients are readmitted within 30 days of
discharge from the hospital (Hu et al. 2014, Jacobs
et al. 2013).
The structure of this study is as follows. In sections

3 and 4, we develop and analyze our model to under-
stand key properties of the optimal checkup policies.
We identify the importance of checkup timing, and
how checkup timing is affected by the stochasticity of
how long patients are ill prior to readmission (delay-
time), as well as the detection rate of checkups. In
section 5, we verify our findings through numerical
analyses by applying our model to national State
Inpatient Database (SID) patient cohorts. The numeri-
cal analyses also demonstrate that our model is robust
to the system parameters and consistently outper-
forms current checkup policies. Using the same num-
ber of checkups, current practice (which is expected

to detect only 16% of the conditions experienced by
readmitted patients) can be improved by up to 43.7%.
In section 6, we summarize the theoretical and practi-
cal implications of our study. In particular, we high-
light how our model provides valuable extensions
to the traditional delay-time analysis framework and
how our findings can effectively detect readmission-
causing conditions and improve the quality of patient
care, thereby mitigating the national readmissions
crisis.

2. Literature Review

Readmissions play a critical role in recent clinical lit-
erature. It is estimated that up to 75% of readmissions
are preventable by patient education, pre-discharge
assessment, and domiciliary aftercare (Benbassat and
Taragin 2000), and post-discharge checkups such as
phone calls, home visits, pharmacists’ visits, and doc-
tors’ office visits can significantly reduce hospital
readmissions (Bellone et al. 2012, Costantino et al.
2013, D’Amore et al. 2011, Dudas et al. 2001, Wong
et al. 2013). Within the healthcare operations research
literature, models have been created to improve
post-discharge health outcomes, including reducing
readmissions and mortality rates: Bartel et al. (2016)
analyzes how the initial hospitalization length of stay
impacts post-discharge mortality rate; Chan et al.
(2012) studies the impact of ICU discharge strategies
on readmissions; Kim et al. (2014) analyzes how ICU
admission control strategies impact readmission rate.
Bayati et al. (2014) builds a classification model to
predict readmissions and analyzed intervention deci-
sions. However, this work does not address the tim-
ing of interventions. Leeds et al. (2015) conducts a
statistical analysis to study how surgeons make dis-
charge decisions and the effect of decision-support
tools for discharge. None of those models directly
address how patients should be monitored after hos-
pital discharge. To address that question, two areas
in the operations research literature are especially
relevant to our study: (i) machine maintenance and
inspection, and (ii) disease screening.
Machine maintenance and inspection: The literature of

machine maintenance and inspection is very well
established. Literature surveys (Barlow and Proschan
1996, Wang 2002) categorize maintenance policies into
two groups: preventive maintenance (PM) and correc-
tive maintenance (CM). Our problem aligns more
closely with PM frameworks since PMs proactively
prevent failure, whereas CMs are only performed
after failures occur. PMs can be scheduled in the fol-
lowing fashion: (i) age-dependent policies perform
PM at a fixed time T; (ii) periodic and sequential poli-
cies schedule multiple PMs in fixed or variable inter-
vals; and (iii) failure limit policies perform PMs when
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the failure rate of a machine exceeds a predetermi-
ned threshold. The dynamics of machine deteriora-
tion are typically modeled by (i) Markovian processes
(Sim and Endrenyi 1993), (ii) semi-Markovian pro-
cesses (Milioni and Pliska 1988, Yeh 1997), (iii) hidden
Markov models (White 1977), and (iv) delay-time
models (Wang 2012). More specifically, Sim and
Endrenyi (1993) models the deterioration as a contin-
uous time Markov chain and considers multiple
failure types and repair/maintenance actions. They
minimize the long-run average downtime and cost,
which is not suitable for our problem. Yeh (1997) uses
phase-type distributions to approximate general dis-
tributions of a semi-Markovian model. They develop
algorithms for optimal state-age-dependent policies
that also minimize long-run average cost. White (1977)
develops a POMDP model for the machine inspec-
tion/maintenance problem which minimizes the
long-run average cost. These models are not suitable
for our problem because they assumed Markovian
deterioration and optimized long-run average cost
and downtime.
Wang (2012) gives a thorough survey on delay-time

models, which are a special case of semi-Markovian
models with three states. Traditional delay-time anal-
ysis is based on renewal theory and reliability which
assumes the unit lifetime has increasing failure rate.
The goal of those models is typically to determine an
inspection schedule that minimizes long-run costs
(Christer and Jack 1991, Jardine and Tsang 2005) or
minimizes expected downtimes (Dagpunar 1994)
given identical units that can be replaced. Our prob-
lem necessitates several extensions: (i) unlike inter-
changeable machine components, patients cannot be
“replaced”; (ii) our objective is to maximize the proba-
bility of a checkup (inspection) detecting a patient’s
condition; (iii) readmission rates depend on time since
discharge, so we have a time-varying failure rate; and
(iv) existing models do not allow for policies com-
posed of different types of inspections with varying
inspection detection rates (Christer 1999). Monitoring
policies composed of inhomogeneous checkups (e.g.,
phone calls, office visits, etc.) are particularly valuable
because empirical evidence indicates that policies
consisting of mixed checkup methods are more effec-
tive than policies consisting of only one checkup
method (Holland et al. 2005, Wong et al. 2013).
Close to our work is Milioni and Pliska (1988),

where a semi-Markovian model with three states was
used to model machine deterioration and catastrophic
failure (i.e., no repair/replacement after failed). They
considered two objectives: minimize the cost of
inspections, false positives, and treatment; and mini-
mize the probability of failure. Existence of optimal
solutions and algorithms for solving the problems
were established. However, the authors did not

provide insights into the structure of the optimal poli-
cies. Moreover, they assumed perfect inspections in
the sick state. Although this model is somewhat simi-
lar to our model, the key difference is that this model
is still a long-run steady-state planning model in both
objective functions.
Disease screening: Within the healthcare operations

research field, models have been developed to estab-
lish medical inspection schedules that detect the onset
and progressions of diseases such as chlamydia infec-
tion (Teng et al. 2011), diabetes (Brandeau et al. 2004),
AIDS (Deo et al. 2014, Sanders et al. 2005), hepatitis
(Fu et al. 2012), breast cancer, (Ayer et al. 2012, Ayer
et al. 2015, Brailsford et al. 2012, Maillart et al. 2008),
colorectal cancer (Erenay et al. 2014, G€unes� et al. 2015,
Harper and Jones 2005) cervical cancer (Myers et al.
2000), prostate cancer (Pinsky 2004, Tsodikov et al.
2006, Zhang et al. 2012a), bladder cancer (Kent
et al. 1989), and glaucoma (Helm et al. 2015). Delay-
time models are used to model hepatitis progression
(Fu et al. 2012), and vascular patency loss (Zhang et al.
2012b). Most of the models are based on discrete time
Markovian assumptions (Ayer et al. 2012, Ayer et al.
2015, Erenay et al. 2014, Kent et al. 1989, Maillart et al.
2008, Myers et al. 2000, Zhang et al. 2012a), which do
not fit into our problem since the deterioration dynam-
ics of the readmitted patients are not necessarily
Markovian.
Bavafa et al. (2013) studies a three-state continuous

time Markov model in the context of primary care
routine visits. The authors examine the effectiveness
of office visits as well as e-visits as a cost-effective
preventative action. However, the model assumes
Markovian deterioration and focuses on steady-state
planning from the perspective of the primary care
providers. Fu et al. (2012) applies delay-time models
on hepatitis screening. However, they focus on opti-
mal statistical estimation rather than the optimal
monitoring schedule planning. Closest to our work
is Zhang et al. (2012b), where follow-up checkups
are scheduled to minimize the probability that the
time between patency loss and its detection exceeds
some length of time. The results on the timing of
checkups under the assumptions of deterministic
delay-time and Weibull-distributed failure rate are
generally consistent with our findings. However, the
authors consider perfect checkups only and do not
consider general distributions. Their work focuses
on the timing of checkups only and does not study
how quantity, quality, or mix of different checkups
impact monitoring schedules. Moreover, they
estimate the distributions using maximum likeli-
hood methods assuming Erlang and exponential dis-
tributions, whereas we use best-fit distributions
obtained directly from the data. The novelties of our
work leverage the composition of different checkup
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methods (e.g., office visits and phone calls) and
address the tradeoffs in scheduling checkups with
both perfect and imperfect inspections under inho-
mogeneous failure rates. Our work differentiates
from Zhang et al. (2012a) in the following aspects. (i)
In contrast to their model, we analyze the optimal
structural of the checkup policies (consisting of per-
fect checkups) without assuming a specific paramet-
ric family. (ii) For imperfect checkups, we show that
imperfect checkups (such as phone calls) can affect
the timing and detection probability significantly by
considering the detection rate of checkups. More-
over, (iii) we incorporated various sources of data to
estimate the hidden time-to-develop the condition
distributions using numerical Laplace inverse trans-
form. Helm et al. (2016) developed a mixed integer
programming (MIP) approach to solving a planning
problem for how many healthcare professionals to
staff to implement a follow-up program. This model,
however, assumed a homogeneous population(s) of
patients and was designed as a static planning
model for a cohort of patients taking the hospital’s
perspective. Our model, on the other hand, is patient
centered and can be tailored based on each individ-
ual’s projected readmission density curve—focusing
on the operational level rather than a steady-state
planning model. Our delay-time modeling approach
also enables us to identify structural properties,
which is not possible using their MIP formulation.
Personalized prediction can be incorporated in our
model by (i) estimating a population-based survival
function to model the time to readmission curve
using a Weibull regression and associated risk fac-
tors (socio-demographic, hospital admission and stay
characteristics, etc.), and then (ii) applying transfer
learning techniques to individualize each patient’s
readmission curve (Helm et al. 2016). In this study,
we start with a population-based readmission curve
to focus more on the structural insights into the opti-
mization model given the readmission curve. To
demonstrate how our model performs on patients
with different readmission risk, we obtained optimal
policies for three risk profiles (low, medium, and
high) from Helm et al. (2016) (see Appendix A).
With sufficient data, our model fully supports a per-
sonalized monitoring approach.

3. Model for Optimizing Post-
Discharge Checkup Policies

In this section, we develop and analyze a general
model for designing monitoring plans for patients
after they are discharged from the hospital. First, we
introduce our model notation and parameters (a sum-
mary of the notation can be found in Appendix B).
Next, we develop our general model.

3.1. Delay-Time Model for Readmissions
Based on our field research, the dynamics of an inpa-
tient readmission occur as follows. After a patient
is discharged, he/she may develop a readmission-
causing condition. When this condition first develops,
it does not necessarily cause an immediate readmis-
sion (e.g., an infection). Instead, the patient’s condi-
tion will degrade over time, eventually becoming so
severe that he/she must return to the hospital and be
readmitted. These dynamics are identical to those
found in machine failure models, which have been
shown in the machine maintenance literature to be
well modeled by a delay-time model. Unlike Marko-
vian models, our model handles general distributions
under mild conditions (see section 3.3). Moreover,
since our problem has a short planning horizon
(30 days) and a transient nature (patient-centric not
steady-state planning), continuous delay-time models
allow us to keep track of how long a patient has been
in each state and we can tailor the objective function
as we shall see later. As seen in Figure 1, we consider
individual patients stochastically progressing through
three sequential states upon discharge: healthy, ill,
and readmitted. Thus, within the framework of tradi-
tional delay-time analysis models used in preventa-
tive maintenance, the patient represents the system,
illnesses represent defects, and readmissions repre-
sent failures.

REMARK 1. (“ILL STATE”). It is important to note here
that the ill state is defined as identifying a patient in
a state that causes them to be at risk for a future
readmission. This includes conditions such as infec-
tion and failure to thrive, but also includes condi-
tions such as when the patient has failed to fill a
prescription, is taking their medicine incorrectly, or

Figure 1 Patient State Progression and Checkup Policy
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has not understood or followed post-discharge treat-
ment plans such as exercise or nutritional guide-
lines. Both medical and compliance issues can be
checked for during a phone call or office visit and
incorporated into our modeling framework.

At time 0, we assume a patient is discharged in a
healthy state. After a stochastic amount of time, d, the
patient develops a detectable condition and is consid-
ered to be in the ill state (the first black dot in Fig-
ure 1). We denote this time d as the time-to-develop
the condition. Following a period of time (delay-
time), D (between the first and second black dots
in Figure 1), the patient’s condition worsens to the
point where he/she is readmitted to the hospital. We
denote this time-to-readmission as q = d + D (the
second black dot in Figure 1). Lastly, we let T denote
the length of our model’s planning horizon (e.g.,
T = 30 days). Clinical literature and policy both sup-
port a finite horizon model as the Centers for Medi-
care and Medicaid Services specify that hospital
admissions only qualify as readmissions if they occur
within 30 days of discharge.
At the point of a patient’s discharge, the case man-

ager needs to determine the post-discharge checkup
plan for the patient for the next 30 days. Given n
checkup opportunities, our goal is to place a checkup
at each time ti; i 2 f1; . . .; ng (white circles in Fig-
ure 1), to maximize the probability of detecting the
patient in the ill state. While there is a possibility of a
competing risk of patient mortality, 30-day mortality
rates post-discharge are very small relative to read-
mission rates.
In addition to choosing checkup times, decisions

must be made regarding what type of checkup met-
hod (e.g., phone calls, home visits, doctors’ office vis-
its) to use at each checkup time, ti. Given m different
checkup methods, the indicator variable yij 2 f0; 1g
denotes whether checkup method j 2 {1, . . ., m} is
used at time ti. In Figure 1, y1a = y2b = y3c = y4d = 1.
To model checkup method resource limitations, let wj

denote the maximum number of times checkup
method j 2 {1, . . ., m} can be used.
As mentioned in the contextual grounding of sec-

tion 1, we are developing this research to help per-
sonalize monitoring plans for each patient at the
provider/practice level. Thus, we allow these con-
straints to be tailored to what the clinician believes is
an appropriate level of checkup intensity (i.e., how
many office visits and phone calls they are able/will-
ing to make). For example, our clinical collaborator
indicates that most surgeons would typically be will-
ing to do one office visit, two in cases where they are
more concerned about the patient, and a maximum
of three where the patient’s condition indicates
very high risk. These determinations, however, are

typically made by the clinician based on a medical
and historical knowledge of the patient and their con-
dition and are difficult to quantify in a cost-based
or constraint-based structure. Further, budgets for
checkups are not typically considered when making
individual checkup decisions for specific patients,
hence the inclusion of costs does not fit the current
practice and would provide barriers given that many
clinicians are averse to such an approach in individ-
ual patient decision making. Hence, we allow the pro-
vider/practice to determine how many office visits
and phone calls (i.e., wj’s) they believe to be appropri-
ate on a patient-by-patient basis and enter this num-
ber as a model parameter. The model also allows for
clinicians to perform sensitivity analysis to determine,
for example, the marginal benefit of an extra phone
call or office visit compared to their base resource
allocation.
To account for the differences in checkup meth-

ods, that is, an office visit is more effective than a
phone call, we let the detection rate rj 2 ½0; 1� denote
the probability that method j 2 {1, . . ., m} will
detect a condition when the patient is in the ill state
(i.e., true-positive). If r = 1, then we say that the
checkup is a perfect checkup. If r < 1, we say that
the checkup is an imperfect checkup. The detection
rate accounts for the chance that a condition is pre-
sent and yet is not detected. This could be due to an
inability to detect illness based on the questions
asked, poor patient responsiveness, or other reasons.
Patients not answering the phone can also be consid-
ered, but based on discussions with a company that
provides automated phone calls to detect readmit-
table conditions (www.cloud9hcs.com), they achieve
full patient responses to their readmission detection
scripts (questions) in greater than 85% of their phone
calls. We do not consider false-positives in this
model.
Each checkup policy is now defined as, P ¼

ðt1; . . .; tn; y11; . . .; ynmÞ. Further, let NP
i 2 f0; 1g be

the indicator variable denoting whether or not the
patient is detected in an ill state at time ti, given policy
Π. Our objective is to select the checkup policy that
maximizes the probability of detecting the patient in
an ill state (detection probability in shorthand):

max
P

Xn
i¼1

E½NP
i �: ð1Þ

3.2. Model Formulation and Solution Approach
The time-to-develop the condition, d, is described
by a differentiable probability density function gd(�),
which is assumed to be independent of delay-time, D.
This assumption is necessary for the mathematical
formulation and is present in all related machine
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maintenance literature. We also confirm statistical
independence of these two random variables in Sec-
tion 5.1, using historical data. D has PDF f(�), CDF F(�),
and complementary cumulative distribution function
(CCDF) �Fð�Þ. Furthermore, the time-to-readmission, q,
has probability density function gq(�), which is the
convolution of d and D. The checkup optimization
can be expressed as follows:

max
t1;...;tn

y11;...;ynm

Xn
i¼1

Xm
b¼1

yibrb
Xi
s¼1

Z ts

ts�1

gdðkÞ�Fðti � kÞdk

Yi�1

q¼s

Xm
a¼1

yqað1� raÞ ð2Þ

s.t.
Xm
l¼1

yil ¼ 1; 8 i 2 f1; . . .; ng ð3Þ

Xn
i¼1

yil �wl; 8 l 2 f1; . . .;mg ð4Þ

0� i\tiþ1 �T; 8 i 2 f1; . . .; n� 1g ð5Þ
where t0 = 0 and the empty product, Π, equals 1.
The first term in the objective, yibrb, accounts for the

detection rate of the method used for checkup i. The
second term represents the probability that the patient
developed the condition between checkups (s � 1)
and s and is still not readmitted by checkup i. The last
term (the product) represents the probability that
checkups s, . . ., (i � 1) all failed to properly detect the
patient’s existing condition. The constraint of Equation
(3) ensures that only one checkup method is utilized at
each checkup time, Equation (4) ensures that checkup
method resource capacities are not violated, and Equa-
tion (5) ensures proper ordering of the checkups.
The goal is to design a complete post-discharge

checkup plan at the time of the patient discharge.
While the person doing the checkup could potentially
learn new information with each phone call or office
visit that could dynamically modify the time-to-
develop the condition/time-to-readmission curve,
this dynamic updating is out of scope of this project
for several reasons. First, dynamic changes in sched-
ule can be logistically difficult for both patients (hav-
ing a constantly shifting schedule of appointments
can interfere with their normal lives, lives of care-
givers, and their sense of comfort/consistency) and
for providers (changing their own checkup plans for a
cohort of “in flight” patients and possibilities of con-
flicts between schedules). Second, this is not the way
the system is currently designed and would likely
provide significant barriers to adoption in clinical
practice. Another consideration is that the presence of
checkups themselves may reduce the likelihood of a

patient becoming ill. Since, to our knowledge, there is
no method based on the available data to account for
improvement in the time-to-develop the condition
density curve based on frequency and timing of
checkups (and our goal is to develop a data-driven,
practical approach), we omit this from our model and
instead rely on our conservative estimate of the poten-
tial benefit of improved checkup schedules by disre-
garding additional educational benefits of checkups.

REMARK 2. Note that our objective function only
considers the probability of detection and does not
account for how early the condition was detected.
We chose this objective for several reasons. First, it
is intuitive for the clinical audience and captures the
essence of the post-discharge monitoring goal—to
detect conditions and prevent readmissions. Second,
there is no data, to our knowledge, that captures
the benefits of capturing a condition earlier vs. later.
Nevertheless, capturing conditions early would likely
be beneficial. It is possible to modify our objective
function to achieve this, given proper data on the
benefits of early detection.

Solution Approach: We solve this program numeri-
cally by dividing it into subproblems and enumerating
all feasible y vectors. For each subproblem, we imple-
mented an algorithm that combines a genetic algo-
rithm (GA) with an ascent algorithm in the following
fashion. The GA is used to generate solutions through
random initialization, mutation, and crossover (see
Appendix C). In each generation, after the genetic
operations, an ascent algorithm is applied to each of
the solutions in the solution pool for no more than five
iterations with decreasing step size. The master algo-
rithm stops if the gradient is sufficiently small or the
maximum number of iterations is reached. Note that
the ascent algorithm alone is sufficient to find local
optima if the distributions are differentiable with sup-
port on (0, +∞). The GA component is added to
encourage escaping from local optima in the search
for a global optimum and to handle distributions that
are not differentiable and/or have finite support.

REMARK 3. Note that the objective function is not neces-
sarily concave. For example, when the delay-time is
deterministic and we are optimizing for only one perfect
checkup, the concavity of the objective function
is equivalent to the concavity of the probability
density function of the time-to-develop the condition.
However, under reasonable parameterizations in our
numerical analysis, we found that our problem tends
to have a unique optimum near the mode of the time-
to-readmission curve (see Figures D1 and D2 in
Appendix D). Hence, the first-order necessary condi-
tions we analyze below provide strong intuition regard-
ing the region of interest for scheduling checkups.
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3.3. Moving Parts and Assumptions
Our model consists of three moving parts that require
estimation. The estimation of these moving parts is
crucial and challenging due to data scarcity and cen-
soring. In this section, we discuss each of the moving
parts and modeling assumptions surrounding them.
Later in section 5, we discuss the estimation in detail
and conduct sensitivity analysis

• Detection rate of imperfect checkups (r)
The detection rate of an imperfect checkup is
defined as the probability of detecting an exist-
ing condition. In our numerical analyses, we
consider r = 0.6 for phone calls as a baseline
and conduct sensitivity analyses by varying r
between 0.2 and 1. In section 4.3, we analyze
the impact of detection rate (r) by studying
gamma gd distributions.

• Time-to-develop the condition distribution
(pdf: gd)
The time-to-develop the condition distribution
is the probability density of developing a read-
mission-causing condition after discharge. In
order to establish the First-order Necessary
Condition, we require gd to be continuously
differentiable with support on [0, T]. In section
4.1, we analyze the structure of the checkup
timing assuming gd is unimodal. However, in
section 4.2, the unimodality assumption is
relaxed. In Appendix E, we test our model for
robustness using multi-modal gd distributions.

• Delay-time distribution (pdf: f)
The delay-time distribution is the probability
density of the time between condition onset
and readmission. We assume that the delay-
time is independent of the time-to-develop the
condition. In order to establish the First-order
Necessary Condition, we assume f to be con-
tinuously differentiable with support on [0, T].

In section 4.3, we analyzed the impact of detec-
tion rate (r) by studying exponentially distribu-
ted delay-time. Table 1 shows the results of the
sensitivity analyses using different delay-time
distributions.

Our model also assumes that (i) the 30-day post-
discharge mortality rates are small relative to 30-day
hospital readmission rates and therefore can be
neglected; (ii) the post-discharge checkup plan is not
dynamically modified or updated; and (iii) the plan-
ning horizon is finite (i.e., 30 days).

4. Structural Properties

In this section, we analyze special cases to develop
structural insights, which are extended to more
general cases through numerical analyses in section
5. We first focus on the timing of checkups. Then
we examine how different features such as stochas-
tic delay-time, D, and different detection rates
imply small modifications to the general timing
structure. The analysis in sections 4.1–4.3 serves to
develop intuition into rules of thumb that are com-
bined to design a practical, implementable policy
for providers/practices described in section 4.4,
with each section providing a key building block.
The overarching goal is to provide guidance
toward a practical policy that is effective based
only on historical data without relying on the opti-
mization itself.

4.1. General Checkup Timing in Optimal Policies
We later show through numerical analyses (section 5)
that checkup timing has the highest impact on detect-
ing an ill patient, so we begin our analysis with this
feature. To understand the general structure of
checkup timing, we analyze the case of current prac-
tice where standard protocol dictates a single doctor’s

Table 1 Optimal 2-Checkup for Exponential/Gamma Delay-Time Distributions with Different Mean and Variance: The Optimal Policies Outperform
Current Practice by 43.7% (l = 2.35)

Distribution

Time of first
checkup

Time between
checkups

Detection probability

Delay-time distribution E[D] Var[D]
Optimal

2-checkup
Current
practice

Relative
improvement

exponential (l/2) 1.2 1.4 4.9 3.1 0.13 0.08 56.8%
exponential (l)* 2.4 5.5 5.9 4.4 0.23 0.16 43.7%*
exponential (2l) 4.7 22.1 7.4 6.1 0.35 0.29 23.9%
gamma (1/2, 2l) 2.4 11.0 6.5 5.0 0.20 0.15 30.8%
gamma (2, l/2) 2.4 2.8 5.5 3.9 0.25 0.16 56.4%
gamma (3, l/3) 2.4 1.9 5.3 3.6 0.26 0.16 62.1%
gamma (4, l/4) 2.4 1.4 5.2 3.5 0.26 0.16 65.3%

Notes.*Marks the estimated delay-time distribution using our chart review dataset. The timing of checkup (rounded to the first decimal place) is in days.
In our numerical studies, we observed that the solutions are insensitive to rounding of the checkup timing.
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office visit (n = 1). We begin by assuming a determi-
nistic delay-time, D = z ≥ 0, and a perfect detection
rate. We later generalize these analytical results through
numerical analyses in section 5. The objective function
for this special case can be rewritten as follows:

max
t1

E½NP
1 � ¼ max

t1

Z t1

0

gdðkÞð1� Fðt1 � kÞÞdk

¼ max
t1

Z t1

t1�z
gdðkÞdk ð6Þ

The second equality follows from the fact that
the deterministic delay-time, D = z ≥ 0, implies
Fðt1 � kÞ ¼ 1, if t1 � k � z, and Fðt1 � kÞ ¼ 0
otherwise.
Differentiating the objective function with respect

to t1 yields the following First Order Necessary Con-
dition (FONC) for optimality

0 ¼ @

@t1

Z t1

t1�z
gdðkÞdk ) gdðt1 � zÞ ¼ gdðt1Þ ð7Þ

Based on results from our data on readmitted cys-
tectomy patients, we also leverage the fact that the
time-to-develop the condition of readmitted patients,
gd(k), is unimodal. By unimodality of gd(k), the condi-
tion gdðt1 � zÞ ¼ gdðt1Þ implies that ðt1 � zÞ is before
the mode of gd(k) and t1 is after the mode of gd(k).
Thus, the probability density of developing a condi-
tion at t1 � z must equal the probability density of
a condition developing at t1. In practical terms, this
informs decision-makers that, given only one checkup
opportunity, they should schedule the checkup a little
bit (<z) after the time when conditions are most likely
to develop.
Next, consider a more aggressive approach with n

checkups. The following proposition shows that the
general multivariate optimization can be transformed
into a univariate optimization, focused only on the
time of the first checkup. The proposition indicates
the best way to achieve maximum coverage of high
risk times in a patient’s post-discharge recovery.
Specifically, we want our checkups to cover as much
of the period of time when the patient is at highest
risk of having a readmission-causing condition as
possible. This results in the following two insights.
First, if checkups are too close (i.e., spaced closer than
z time units), there is unnecessary overlap in the cov-
erage (i.e., two checkups covering the same time per-
iod). Better coverage can be achieved by spacing them
further apart without any loss in detection (since
delay-time is deterministic). Second, we want the
checkups to cover the high-risk period (i.e. the time
window containing the highest time-to-develop the
condition density), hence it is best to center all of the
checkups around mode of the time-to-develop the

condition distribution, since the density is decreasing
monotonically on either side of the mode.

PROPOSITION 1. If the delay-time is deterministic (D = z
with probability 1) and the time-to-develop the condition
gd is unimodal, then (i) it is sufficient to optimize t1
only; (ii) the checkups are spaced z days apart
equidistantly; and (iii) the densities of developing the
condition are equal at t1 � z and tn

max
t1;...;tn

Xn
i¼1

E½NP
i � ¼ max

t1

Z t1þðn�1Þz

t1�z
gdðkÞdk ð8Þ

s.t. gdðt1 � zÞ ¼ gdðt1 þ ðn� 1ÞzÞ ð9Þ
tiþ1 ¼ ti þ z; 8 i 2 f1; . . .; n� 1g ð10Þ

PROOF. We first show that ðtn � t1Þ ¼ ðn � 1Þz. In
other words, the time between the first and last
checkups is exactly (n � 1)z.

The structure of our objective function appropri-
ately avoids double counting the detection of condi-
tions. To see how, notice that under the assumptions
of deterministic delay-time (D = z) and perfect dete-
ction rates, the objective function in Equation (2)
becomes

Xn
i¼1

Z ti

ti�1

gdðkÞ�Fðti � kÞdk ¼
Xn
i¼1

Z ti

maxðti�1;ti�zÞ
gdðkÞdk

ð11Þ
Thus, only the earliest successful checkup con-
tributes a positive amount to the objective function.
For example, if a condition was present during a
time interval (d, d + D) and three checkups were
scheduled at some arbitrary times ti; tj; tk 2
ðd; d þ DÞ, then only the checkup at minfti; tj; tkg
contributes a positive amount to the objective
function.

This implies that an optimal solution must be
such that the intervals ðti � z; tiÞ are disjoint for all i.
To see why, consider an arbitrary checkup schedule
that has non-disjoint intervals. Suppose the smallest
index corresponding to non-disjoint intervals is j < n
such that (tj � z, tj) and ðtjþ1 � z; tjþ1Þ are non-
disjoint. Then, tj ¼ tjþ1 � z þ c with c 2 (0, z). We
can construct another solution that is strictly better,
by increasing tjþ1 by (z � c). This increases the
objective value by a non-negative amount:

Rminðtjþ2�z;tjþ1þz�cÞ
tjþ1

gdðkÞdk; if j� n� 2R tjþ1þz�c
tjþ1

gdðkÞdk; if j ¼ n� 1:

8<
: ð12Þ
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If j = n � 1, then the change in the objective value is
strictly positive. Similarly, if j ≤ n � 2 and the upper
limit of the integral in Equation (12) is tjþ1 þ z � c,
the change in the objective value is strictly positive
and the adjustment of tjþ1 leaves the intervals
ðtjþ1 � z; tjþ1Þ and (tj+2 � z, tj+2) disjoint. The last
case we need to consider is if j ≤ n � 2 and the
upper limit of the integral in Equation (12) is
tj+2 � z. In this case, there is a non-negative change
in the objective value and the intervals ðtjþ1 � zþ
ðz � cÞ; tjþ1 þ ðz � cÞÞ and (tj+2 � z, tj+2) become
non-disjoint, so we can repeat the steps above. This
process terminates in finite iterations and results in
a strictly positive change in the objective value.
Thus, we can conclude that an optimal solution
must satisfy ðtn � t1Þ � ðn � 1Þz. Figure 2 illustrates
how Equation (12) is derived in the case of j ≤ n � 2
and tjþ2 � z � tjþ1 þ z � c.

We will now argue that an optimal solution can-
not have ðtn � t1Þ [ ðn� 1Þz. Combining this with
our previous finding yields our desired result that
an optimal solution must satisfy ðtn � t1Þ ¼
ðn � 1Þz. If ðtn � t1Þ [ ðn � 1Þz, then ∃ i 2 {1, . . .,
n � 1} such that tiþ1 � ti ¼ z þ c, with c > 0. In
other words, there is at least one pair of consecu-
tive checkups that are spaced farther than z
apart. A checkup schedule with this property is
necessarily suboptimal because the objective
value can be improved by adjusting either ti or
ti+1 (without changing any other checkup times),
depending on their relative positions to the mode
of gd(�).

In particular, if ti \ tiþ1 � mode of gd(�), we can
increase the objective value by shifting the checkup i
from ti to ti þ �, where � 2 (0, c]. This increases the
objective value by

R tiþ�
ti

gdðkÞdk � Rmaxðtiþ��z;ti�1Þ
maxðti�z;ti�1Þ

gdðkÞdk. Observe that the second term is integrated
over the interval ½maxðti � z; ti�1Þ; maxðti þ �� z;
ti�1Þ�, which has length ≤ �. Since the second integral
interval is to the left of the first integral interval,
and these two intervals are to the left of the mode, it
follows that

R tiþ�

ti
gdðkÞdk � Rmaxðtiþ��z;ti�1Þ

maxðti�z;ti�1Þ gdðkÞdk [ 0.

By symmetry, if ti [ tiþ1 � mode of gd(�), we can
shift checkup i + 1 from ti+1 to ti+1 � �, where
� 2 (0, c], to achieve a non-negative improvement. If
ti \ mode of gd(�) < ti+1, we can achieve a non-nega-
tive improvement by moving ti to the right (if
gdðtiÞ � gdðtiþ1Þ) or moving ti+1 to the left (if
gdðtiÞ\ gdðtiþ1Þ). The improvement is strictly positive
if gd is strictly unimodal, that is, has a unique mode.

We can now conclude that an optimal solution
must satisfy ðtn � t1Þ ¼ ðn � 1Þz. Given our previ-
ous result that an optimal solution must have
checkup times such that the intervals ðti; ti þ zÞ8 i
are disjoint, this implies that an optimal solution
must be of the form ti ¼ ti�1 þ z; 8 i 2 f2; . . .; ng.
This is equivalent to letting ti ¼ t1 þ ði � 1Þz; 8 i 2
f2; . . .; ng. Note that this only holds assuming the
delay-time is deterministic. This proves that
maxt1

R t1þðn�1Þz
t1�z gdðkÞdk is in fact optimal. h

REMARK 4. If the distribution of the time-to-develop
the condition is right/left skewed (yet still unimo-
dal), this does not affect our optimality results at all,
since our results assume nothing about the skewness
of the curve. The checkups would still be centered
around the mode, even though the mode will be
later/sooner in the 30-day readmission window. If
the distribution is not unimodal, then alternative
optima might exist. Nonetheless, some of the proper-
ties from Proposition 1 still hold. For example, under
the assumptions of bimodal distribution and deter-
ministic delay-time, we know the following: (i) if
there was only one checkup to place, Proposition 1
still holds; (ii) if there were multiple checkups, check-
ups are placed no closer than z days apart (might be
farther than z days apart depending on the shape of
the bimodal curve). For the general case with multi-
ple modes, the First Order Necessary Conditions still
hold and the problem can still be solved numerically.

From Proposition 1, we see that the problem effec-
tively becomes the single checkup problem while let-
ting D = nz. Thus, an optimal solution in the case of
perfect inspection checkups and deterministic delay-
times must satisfy the following conditions

gdðt1 � zÞ ¼ gdðt1 þ ðn� 1ÞzÞ ð13Þ
tiþ1 ¼ ti þ z; 8 i 2 f1; . . .; n� 1g ð14Þ

Reducing the n-dimensional optimization problem
to a univariate optimization problem makes these
conditions especially valuable because these univari-
ate optimizations are easy to solve using ascent search
or binary search even without specialized computer
software. This can be achieved by solving the univari-
ate FONC equation (which is in the form of wðt1Þ ¼
0) using binary search since gdðt1 � sÞ � gdðt1 þ

(a)

(b)

Figure 2 Schematic Sketch for Equation (12) [Color figure can be
viewed at wileyonlinelibrary.com]
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ðn � 1ÞzÞ is monotone increasing for a unimodal
function), ascent search, or Newton’s method. Fur-
thermore, the conditions imply that an optimal policy
schedules one contiguous block of checkups with the
checkups collectively covering a time of length nz.
Practically speaking, this informs decision-makers
that if they have n perfect checkups (e.g., doctors’
office visits), then the checkups should be scheduled
surrounding the time when conditions develop most
frequently such that there are z (delay-time) time
units between each checkup.

4.2. Effect of Stochastic Delay-Time on Optimal
Checkup Timing
Proposition 1 gives us the block structure of an opti-
mal checkup policy with deterministic delay-time, D.
In this section, we investigate how stochastic D affects
the spacing of checkups within the block of checkups.
First, relaxing the assumption that D = z, the objective
function becomes

max
t1;...;tn

Xn
i¼1

Z ti

ti�1

gdðkÞ½1� Fðti � kÞ�dk ð15Þ

which for n = 1 equals
R t1
0 gdðkÞ½1 � Fðt1 � kÞ�dk,

resulting in the following FONC:

0 ¼ @

@t1

Z t1

0

gdðkÞ½1� Fðt1 � kÞ�dk ) gdðt1Þ

¼
Z t1

0

gdðkÞfðt1 � kÞdk ¼ gqðt1Þ ð16Þ

Notice that the RHS of Equation (16) is the formula
for the probability density associated with a readmis-
sion occurring at t1. This implies that at an optimal
t1, the marginal rate of developing a condition (i.e.,
the marginal increase in patients who could be
detected if t1 was increased) is equal to the marginal
rate of a readmission occurring (i.e., the marginal
lost patients that would be readmitted if t1 was
increased). Both results extend our intuition from
section 4.1 to the case of stochastic delay-time.
Generalizing the FONC to an arbitrary number of

checkups yieldsZ ti

ti�1

gdðkÞfðti � kÞdk ¼ gdðtiÞFðtiþ1 � tiÞ;
8i 2 f1; . . .; n� 1g

ð17Þ

Z tn

tn�1

gdðkÞfðtn � kÞdk ¼ gdðtnÞ ð18Þ

The intuition behind these equations is similar to
when n = 1 in that the optimal solution balances the
marginal rate of catching a condition with the ith
checkup with the marginal rate of missing a later
condition. The LHS of Equation (17) is the

probability of checkup i detecting a condition devel-
oped between ti�1 and ti. Since the perfect checkup
at ti�1 ensures ti will only detect conditions between
ti�1 and ti, the LHS of Equation (17) can be thought
of as the marginal benefit of moving inspection i
slightly to the right from ti to ti þ � (as � ? 0+), and
therefore capturing more conditions that could have
developed between ti and ti þ �. This is essentially
the marginal opportunity cost. The RHS of Equation
(17) is the probability of ti+1 missing the condition
developed after ti. This is analogous to lost sales, in
that it represents the marginal rate of patients devel-
oping a condition at ti and being readmitted before
the next inspection at ti+1.
Rearranging the terms of Equation (17) implies the

timing between inspections follows a newsvendor-
type solution:

tiþ1 � ti ¼ F�1

R ti
ti�1

gdðkÞfðti � kÞdk
gdðtiÞ

 !
ð19Þ

The structure of Equation (19) closely resembles
the equation for the optimal stocking quantity in
traditional newsvendor problems. This highlights
the inherent tradeoff between (i) scheduling check-
ups closer together to increase the likelihood of
detecting illnesses that develop between the check-
ups and (ii) scheduling checkups farther apart to
have the opportunity to detect more illnesses by
covering a wider span of time. Both of these trade-
offs are inherently linked to the density of the
delay-time function, F. Thus, the distance between
any two checkups is determined by a solution
where the delay-time density functions as the
demand function.
It is worth noting that one can construct a recur-

sive algorithm to solve the optimization in light
of Equation (19). For instance, given t0 = 0 and t1,

one can determine t2 ¼ t1 þ F�1

R t1

t0
gdðkÞfðt1 � kÞdk

gdðt1Þ

 !
.

Recursively, one can determine t3; . . .; tn. This reduces
the problem to a univariate optimization where t1 is
the only decision variable. Moreover, an optimal
solution must exist since we are maximizing a continu-
ous function over a compact set. For the general case
with stochastic delay-time and imperfect checkups,
our solution procedure utilizes this recursive con-
struction to generate the initial solution seeds (see
Appendix C).
If the solution to the FONCs is not unique, then one

can solve the following univariate maximization to
generate the optimal checkup policy.

max
t1

Xn
i¼1

E½NPðt1Þ
i � ð20Þ
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s.t. t1 2 ½0;T� ð21Þ
In this optimization problem, the checkup policy

Pðt1Þ is drawn from a set of potential candidates
based on the FONCs:

Pðt1Þ ¼ ½t1; t2; . . .; tn�T ð22Þ

¼

t1

t1 þ F�1

R t1

t0
gdðkÞfðt1�kÞdk
gdðt1Þ

 !

t2 þ F�1

R t2

t1
gdðkÞfðt2�kÞdk
gdðt2Þ

 !

..

.

tn�1 þ F�1

R tn�1

tn�2
gdðkÞfðtn�1�kÞdk
gdðtn�1Þ

 !

2
6666666666666664

3
7777777777777775

ð23Þ

REMARK 5. The analyses in this section are based
on the KKT conditions, which assume (i) gd has sup-
port on [0, T]; (ii) f has support on [0, ∞); and (iii) gd
and f are continuously differentiable. It is worth high-
lighting that these results do not require unimodality.

4.3. Effect of Imperfect Inspection Checkups on
Optimal Checkup Timing
As previously mentioned, hospitals have various
checkup methods available with differing detection
rates. Hence, it is valuable from both a practical and a
theoretical perspective to understand how the opti-
mal timing of checkups is affected by the detection
rates of the checkups. For the purpose of exposition,
we let rðiÞ 8i 2 f1; . . .; ng denote the detection rate of
the checkup method employed at time ti. We begin by
considering the case where n = 2 and r(1) = r(2) = r.
This yields the following objective value

r

Z t1

0

gdðkÞ½1� Fðt1 � kÞ�dkþ ð1� rÞrZ t1

0

gdðkÞ½1� Fðt2 � kÞ�dkþ r

Z t2

t1

gdðkÞ½1� Fðt2 � kÞ�dk

ð24Þ
We can then derive FONCs as followsZ t1

0

gdðkÞfðt1�kÞdk
¼gdðt1Þ Fðt2� t1Þþð1� rÞð1�Fðt2� t1ÞÞð Þ

ð25Þ
ð1� rÞ

Z t1

0

gdðkÞfðt2� kÞdkþ
Z t2

t1

gdðkÞfðt2� kÞdk¼ gdðt2Þ

ð26Þ

The intuition behind these equations is similar to the
perfect checkup case in Equations (17) and (18). The
LHS of Equation (25) is the probability density
of detecting a condition that developed between 0 and
t1, that is, marginal rate of gain in terms of detection.
The RHS of Equation (25) is the marginal density
of missing a condition developed after t1, that is, loss
sales. To see this, note the term gdðt1ÞFðt2 � t1Þ
appears and has the same intuition as in Equation (17),
that is, the condition developed after t1 but the patient
was readmitted before t2. However, the inspection at t2
could also miss an extant condition due to the imper-
fect detection. This event is captured by the term
gdðt1Þð1 � rÞð1 � Fðt2 � t1ÞÞ, which implies the con-
dition was detectable at time t2 but failed to be
detected. Equation (26) represents the tradeoff between
lost sales (RHS) and marginal change in detection
(LHS). The RHS of Equation (26) is the marginal den-
sity of a condition developing at time t2, that is, lost
sales as before since any conditions developing after t2
will not be detected. The first term on the LHS is the
density of a condition being detectable at time t2 that
developed on 0 to t1 and was missed by the inspection
at time t1, that is, the marginal change in detection for
conditions missed by the first inspection. The second
term on the LHS is the probability density of detecting
a condition that developed between t1 and t2.
Using the FONCs, we next show that as r increases,

the two checkups move farther apart. Hence, by
improving the detection rate of a particular method, the
doctors should place inspections farther apart and can
cover a larger time period in which to catch potentially
developing conditions. The intuition behind this is that
with a poor detection rate, a subsequent inspection can
catch a condition that was previously missed if placed
closer to the previous inspection. This comes at the
expense of covering less overall timespan, as placing
this inspection earlier will miss the opportunity to catch
later developing conditions. As the detection rate
increases, however, there is a smaller benefit of catching
conditions missed by a previous inspection, since fewer
patients are missed the first time.
For the analysis, let t�1 and t�2 be the optimal values

of t1 and t2, respectively. To show this property ana-
lytically, we first introduce an inequality that relates
the probability densities of developing the condition
and readmission.

DEFINITION 1. Assuming gq and gd are differentiable, the
delayed readmission log-likelihood inequality at time t is
defined as d

dt log gdðtÞ ¼ g0dðtÞ
gdðtÞ � d

dt log gqðtÞ ¼ g0qðtÞ
gqðtÞ.

This inequality states that, at time t, the deriva-
tive of the log-likelihood of developing the condi-
tion is less than or equal to the derivative of the
log-likelihood of readmission. This is similar to
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previous results we have seen relating the density
functions of time-to-develop the condition, d, and
time-to-readmission, q. The following remark shows
that this condition holds for Erlang and exponential
distributions. The condition has been verified numer-
ically for other distributions we use in our numerical
studies (see Table 1 in section 5). As we shall see in
our numerical analyses, the shape of Erlang distribu-
tions resembles the observed time-to-develop the
condition, and an exponential distribution is actually
the best fit distribution for the delay-time.

REMARK 6. If the time-to-develop the condition fol-
lows an Erlang distribution with scale l and shape
parameter kd (Erlang(kd, l)), and the delay-time fol-
lows Erlang(kD, l), then the time-to-readmission
follows an Erlang(kq, l) where kq = kd + kD. The
delayed readmission log-likelihood inequality becomes
(kd �1)t�1 ≤ (kq�1)t�1, which holds∀t > 0.

The following Lemma (proved in Appendix F)
shows that, as the detection rate increases, the first
inspection will be placed closer to the patient’s time
of discharge (i.e., moved earlier).

LEMMA 1. If the delayed readmission log-likelihood
inequality holds, then t�1 decreases in r.

Leveraging Lemma 1, we next show that the gap,
t�1 � t�2, widens as r increases. Notice that the optimal
timing t�1 and t�2 is the solution to the FONCs, that is,
Equations (25) and (26). For general delay-time and
time-to-develop the condition distributions, the FONCs
are essentially a set of integral equations without a
closed form solution. In the following theorem, we con-
sider the case where the delay-time is exponential and
the time-to-develop the condition is Erlang so that the
time-to-readmission is in closed form since the convolu-
tion of exponential and Erlang distributions is an Erlang
distribution. The structure and shape of the Erlang and
exponential distributions are close to what is observed
in practice through our numerical analyses (see Figure 4
in section 5.1). With exponential-Erlang distributions,
Equation (26) effectively becomes a polynomial where
t�1 can be directly expressed in closed form.
Theorem 1 now shows, for the case of Erlang and

exponential densities for d and D, that the two tests
move farther apart as the detection rate increases. This
result is later generalized in our numerical study.

THEOREM 1. If the time-to-develop the condition follows
Erlang(k, l) and the delay-time follows exponential(l),
then t�2 � t�1 strictly increases in r.

PROOF. We begin with the following technical
lemma, which is proved in Appendix F.

LEMMA 2. If the delayed readmission log-likelihood
inequality holds, then gqðtÞ

gdðtÞ increases in t.

Without loss of generality, assume l = 1. For l 6¼ 1,
the problem can be scaled. We then rewrite Equation
(26) as follows:

gqðt�2Þ � gdðt�2Þ ¼ r

Z t�1

0

gdðsÞfðt�2 � sÞds

, e�t�2 t�2
k

k!
� e�t�2t�2

k�1

ðk� 1Þ! ¼ r

Z t�1

0

e�t�2sk�1

ðk� 1Þ! ds
ð27Þ

e�t�2 t�2
k

k!
� e�t�2 t�2

k�1

ðk� 1Þ! ¼ r
e�t�2 t�1

k

k!
, t�2

k � kt�2
k�1 ¼ rt�1

k ð28Þ

, t�1 ¼
t�2

k � kt�2
k�1

r

 !1
k

ð29Þ

The first and second derivatives of t�1 with respect to
t�2 are

@t�1ðt�2Þ
@t�2

¼
ðt�2 � kþ 1Þ t�2

k�1ðt�2�kÞ
r

� �1
k

t�2ðt�2 � kÞ and

@2t�1ðt�2Þ
@t�2

2
¼ �

ðk� 1Þ t�2
k�1ðt�2�kÞ

r

� �1
k

t�2
2ðt�2 � kÞ2 ð30Þ

Based on the first and second derivatives, we
show that t�1ðt�2Þ has the following properties: (i) t�1
strictly increases in t�2; (ii) t�1ðt�2Þ is concave; (iii)

limt�
2
!þ1

@t�1ðt�2Þ
@t�

2
¼ ð1=rÞ1k [ 1; and (iv)

@t�1ðt�2Þ
@t�

2
[ 1;

8t�1; t�2.
For (i), notice that ðt�2 � kÞ has to be strictly positive

for t�1 2 Rþ. Hence,
@t�1ðt�2Þ
@t�

2
[ 0, which implies t�1 strictly

increases in t�2. For (ii), since ðt�2 � kÞ [ 0, it is clear

that
@2t�1ðt�2Þ
@t�

2
2 \ 0 for k > 1, integer. Hence t�1ðt�2Þ is con-

cave. To see (iii), for k > 1 and r 2 (0, 1), we have

limt�
2
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2
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(iv) follows from Properties 2 and 3. Given the
four properties above, Figure 3 sketches t�1ðt�2Þ
schematically.
Consider optimal t�1 and t�2 with detection rate r. As

r increases, t�1 decreases (Lemma 1). By property 1, t�2
also decreases. Denote the new optimal solution as t��1
and t��2 . As shown in Figure 3, since the slope of t�1ðt�2Þ
is always strictly greater than one, it follows that
t�2 � t��2 \ t�1 � t��1 . Therefore t��2 � t��1 [ t�2 � t�1 as
desired, which completes our proof. h

REMARK 7. Under the assumptions of Theorem 1, if
the detection rate changes from r to r + �, (� > 0),
then the increase in the gap between the two check-
ups is bounded above by 1 � r (if k = 1) or 2(r + �)k
(if k ≥ 2). Please see Appendix F for the proof.

In practical terms, checkups should be placed
farther apart as the detection rates improve. This is
because when the detection rate is relatively low,
there is a benefit to scheduling checkups that “over-
lap” each other in case a checkup fails to detect an
existing illness. However, this benefit diminishes as
the detection rate improves, so the checkups spread
farther apart from one another. This allows the
checkup schedule to cover a wider range of potential
readmissions without losing detection quality.

4.4. From Theory to Practice: Implementable
Policies from Modeling Insights
Through the prior analysis, we have captured the
key factors affecting the efficacy of post-discharge
checkup policies. To summarize the analytical
insights of the previous section into practical rules of
thumb, we now illustrate how to design a simple
checkup policy for doctors and discharge planners.
Suppose a patient is to be discharged and a post-
discharge follow-up plan needs to be determined by

the case manager. The case manager first decides the
aggressiveness of the follow-up plan, that is, how
many office visits and phone calls to use. This can be
done by evaluating the patient’s readmission risk
using existing risk calculators (Hu et al. 2014). Given
the estimates of the time-to-develop the condition
density curve and the delay-time D (later in section
5.1 we estimate the densities using historical data),
the next step is to determine the timing of checkups.
From the analyses in sections 4.1 and 4.2 and Pro-

position 1, the checkups should be placed approxi-
mately z days apart (z being the average delay-time)
such that the first and the last checkups are at the
same height on the time-to-develop the condition
curve (one on either side of the mode). Finally, from
Theorem 1, the case manager adjusts the spacing
of checkups according to the detection rate of the
checkups: higher detection rate spreads the checkups
farther apart. For instance, the case manager should
make less frequent contact with the patient if he/she
believes that the patient was well educated for the
diagnosis and understands what post-operative com-
plications might happen (this translates to a higher
detection rate); or the case manager may want to
make frequent contact if he/she believes that the
patient is less responsive to phone calls or is less
adherent to the follow-up appointments (this trans-
lates to a lower detection rate). In the next section, we
generalize the analytical insights using numerical stu-
dies to deepen the understanding of how to empiri-
cally estimate model parameters, of the impact of
office visit and phone call sequencing, and of quantity
vs. quality of checkups.

5. Numerical Analyses

In this section, we conduct extensive numerical ana-
lyses on cystectomy readmissions from a regional
hospital as well as the national SID to address the key
questions that arise in post-discharge checkup poli-
cies: when to schedule checkups, how many checkups
to schedule, and what types of checkups to schedule.
First, we study two-checkup policies with one phone
call and one office visit, which are consistent with cur-
rent practice at our partner hospitals. We show that
our approach improves the detection probability
upon current practice by up to 43.7% when applied to
readmitted patients. We test the robustness of our
model with different exponential and gamma delay-
time distributions. We also verify the delayed read-
mission log-likelihood inequality defined in section
4.3. Next, we examine more aggressive checkup plans
with more checkups to develop insights into: (i) opti-
mal checkup timing and sequencing, (ii) effects of
varying the detection rate, and (iii) checkup quantity
vs. quality. We then validate our work by applying

Figure 3 Schematic Sketch of t�1 as a Function of t�2 [Color figure can
be viewed at wileyonlinelibrary.com]
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the optimal policies found to a different subset of
patients and show that our results continue to hold.
We conclude this section by summarizing rules of
thumb that can be easily implemented by healthcare
professionals to develop post-discharge checkup poli-
cies that have the potential to improve detection of
readmission causing conditions.

5.1. Data and Model Parametrization
The numerical analyses in this section are based on
two datasets. The first dataset contains delay-time
information of 327 cystectomy patients discharged
from our partner hospital between 2007 and 2012. The
information in the dataset includes the following: date
of discharge from the hospital, date of first contact
with the healthcare provider after discharge, who
initiated the contact, what the chief complaint was,
date of readmission, what condition caused the read-
mission, and when the condition was first experi-
enced. By computing the difference between the date
of readmission and date of condition onset, we obtain
the delay-time for each patient in this cohort. The data
were manually collected by a medical student and a
medical fellow at our partner hospital by going over
medical charts and reviewing each patient’s triage
notes upon readmission. This patient cohort consisted
of 79 female and 248 male patients between 37 and
91 years old (mean = 65.9, standard deviation = 11.2).
Among the 327 patients, 63 patients (19%) were read-
mitted within 30 days of discharge. We used this
database to obtain data on the delay-time random
variable and the time-to-develop the condition ran-
dom variable. Note that we focus on the readmitted
patients only and exclude the patients who were not
readmitted from our analysis. We also ignore the
intervention and prevention effect of the checkups a
patient received, which, at our partner hospital, typi-
cally included a phone call and a follow-up office visit
on the 2nd and 12th day after discharge respectively.
We acknowledge there are many empirical chal-

lenges with this type of data and we do not address
them all in this study. One of the key challenges is the
estimation of the distributions. Since we only used
readmitted patients in our estimation, it is likely that
the estimated distributions differ from the ones para-
meterized using all patients, including readmitted
and non-readmitted patients. In addition, since we
ignored the intervention and prevention effect of
existing checkups, our estimated distributions could
be biased. In Appendix G, we provide an initial
approach addressing how incorporating both read-
mitted and non-readmitted patients might affect our
model’s performance. Notice that results presented in
that appendix are obtained from a limited case study
on a very specific dataset. Nevertheless, empirical
estimation is not the primary focus of our study and

the remaining empirical challenges are left to future
work. Notice that, to the best of our knowledge, this is
the first study in the clinical or operational literature
to attempt to characterize these two variables using
actual data. This is because existing available data-
sets do not capture delay-time or time when a read-
mission-causing condition developed. Due to data
scarcity, we conducted our numerical analysis using
population-based distribution curves. Given suffi-
cient delay-time data, our approach can be tailored to
individual patients by applying transfer learning
techniques for personalized readmission forecasting
(Helm et al. 2016). We demonstrate robustness of our
optimal policies to distribution in Table 1 and the ana-
lytical results from section 4 are not dependent on the
form of the delay-time distribution. Further, the mean
of the delay-time distribution observed in the data
(2.35 days) is very close to delay-time estimates for
common readmission-causing conditions in a survey
given to an independent group of five practicing sur-
geons (average of 2 days). These cross-checks should
help mitigate some concerns about the accuracy of the
estimation. We also tested the dependency between
delay-time and the time-to-develop the condition
using the 63 readmitted patients from this new
dataset. The correlation between the two variables is
0.14, and they are independent (p < 0.05) using the
Hilbert–Schmidt independence criterion (Gretton
et al. 2008). While data for this study was collected
manually as a proof of concept, this process could be
appropriately scaled with IT support due to the pro-
liferation of electronic health records. This type of
analysis, however, is left to future work.
The second dataset comes from the SID, which was

gathered as part of the Healthcare Cost and Utiliza-
tion Project sponsored by the Agency for Healthcare
Research and Quality. From the SID dataset, we iden-
tified 717 cystectomy patients (ICD-9 code 577, 5771,
and 5779) from the states of Florida, Iowa, North Car-
olina, New York, and Washington that were read-
mitted within 30 days of discharge in 2009 and 2010.
As mentioned in section 1, we choose cystectomy
patients as a proof of concept given that our clinical
collaborator is an expert in this type of surgery and
that it has one of the highest readmission rates in the
U.S. Note that subsequent work by our collaborator’s
surgical research group indicates the dynamics
of cystectomy are similar to many other surgeries,
particularly lower torso/abdomen surgeries (Jacobs
et al. 2017), and our clinical collaborator believes this
approach would be broadly applicable in the surgery
domain; this includes surgeries targeted for inclusion
in Medicare’s readmission penalty program (HRRP).
To further verify that the unimodality assumption
holds for other surgery cohorts, we extracted the
readmission records of patients who had some of
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the most common abdominal and chest surgeries in
2009 and 2010: Abdominal Aortic Aneurysm Repair
(AAA), Esophagectomy, Pancreatectomy, Aortic
Calve Replacement (AVR), Coronary Artery Bypass
Grafting (CABG), and Lung Resection. In all six cases,
the time-to-readmission and the estimated time-to-
develop the condition curves (estimated using
readmitted patients) appeared to be unimodal (see
Appendix H).
We excluded patients who had ICD-9 code 4411,

4412, 4413, 4415 or 4416, patients who were 18 years
old or younger, and patients who died during cystect-
omy or during their inpatient stay. The SID database
captures the length of time between each patient’s
initial discharge and his/her subsequent readmission.
Among the 717 patients, 385 patients from 2010 were
used for parametrization and optimization of the
models, and 332 patients from 2009 were used to test
the optimal policies. We used the first dataset to esti-
mate the delay-time distribution and to validate the
efficacy of recovering the time-to-develop the condi-
tion distribution. To do that, we started by fitting
distributions to the observed time-to-readmission
(shown in Figure 4a) and to the observed delay-time
(shown in Figure 4b). Gamma and exponential distri-
butions worked well to model the time-to-readmis-
sion and the delay-time, respectively.
Given the time-to-readmission and the delay-time

distributions, we recovered the time-to-develop the
condition distribution through a numerical inverse
Laplace transform (see Appendix I). The numerical
Laplace inversion fitted the true time-to-develop the
condition well with a Pearson v2 p-value = 0.36. This
validates the efficacy of recovering the distribution
of the time-to-develop the condition using inverse
Laplace transform.
With an effective approach to recover the time-to-

develop the condition, we expanded our analysis to

the SID database (which includes patients from many
hospitals across five states). Using the 2010 SID
patients, we fitted a gamma distribution to the time-
to-readmission as shown in Figure 5. Since the delay-
time information was not recorded on the SID
database, we assumed that the delay-time for the SID
patients followed the same distribution as the delay-
time observed on patients at our partner hospital
(exponential(2.35)). We used the inverse Laplace
transform to estimate the time-to-develop the condi-
tion distribution (see Figure 5).

5.2. Comparison of Policies Against
Current Practice
With the model parameterized on the 2010 SID patients,
we evaluated how our policy improves upon the cur-
rent practice at our partner hospital. We also exam-
ined the robustness of our model by fitting various
exponential and gamma delay-time distributions (see
Table 1). The distributions tested in Table 1 satisfy the
delayed readmission log-likelihood inequality defined
in section 4.3.
The current practice for post-discharge monitoring

at our partner hospitals is to place a phone call on
the 2nd day after discharge and an office visit on the
12th day after discharge. Throughout our numerical
analyses, we assume that an office visit is a perfect
inspection with detection rate r = 1; and a phone call
is an imperfect inspection with detection rate r = 0.6
(given the patient has developed a condition, a phone
call will detect the condition successfully with prob-
ability 0.6). These values were estimated by our
clinical collaborators. In section 5.4, we perform a sen-
sitivity analysis on the detection rate.
Applying the algorithm described in section 3.2, we

solve for the optimal 2-checkup policies with one
phone call and one office visit (for fair comparison
with current practice) using the 2010 SID patients. We

(a) (b)

Figure 4 Time-to-Readmission and Delay-Time Distribution Fitted from Medical Charts [Color figure can be viewed at wileyonlinelibrary.com]

Note. Time-to-readmission q � gamma(1.74, 5.98), delay-time D � exponential(2.35).
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tested seven delay-time distributions (see Table 1)
with the same mean and different variance as a sensi-
tivity analysis, since the delay-time distribution is
estimated based on a small sample of 63 patients and
no other publicly available dataset captured delay-
time information. Table 1 shows how our policy out-
performs current practice by significantly increasing
the probability that ill patients are detected before
readmission (defined as the detection probability).
The relative improvement of the detection probability
ranges from 23.9% to 65.3% (average = 49%) for the
exponential and gamma delay-time distributions
tested. This improvement is achieved solely by opti-
mizing the timing and sequencing of the two check-
ups. As we shall see in the following sections, the
detection probability further increases if we adopt
more aggressive post-discharge monitoring policies
by increasing the number of checkups. However, we
would like to point out that the improvement is com-
puted, using readmitted patients only, which repre-
sent 19% of the entire cohort. Hence, when taking
both readmitted and non-readmitted patients into
account, the improvement might be smaller. As a
sanity check, we conducted simulations and verified
that, under current practice, the simulated readmis-
sion rates predicted by our model were very close to
the readmission rates that were actually observed in
the data (both around 20%).
In Table 1, where the mean of the gamma distribu-

tion is held constant and the variance is increased, we
see that increased (gamma-distributed) delay-time var-
iance leads to greater spacing between checkups. The
performance of the optimal policy also degrades as the
(gamma-distributed) delay-time variance increases.
This implies that efforts at standardizing patients’
behavior at home could have benefits for readmission
reduction because it reduces the delay-time variance.
This variance effect is offset in the exponential case by
the concurrent increase in mean delay-time, which
indicates that efforts to keep patient conditions from
degrading too fast (e.g., compliance with physician

orders and adherence to medication), can also provide
significant benefit by allowing the healthcare provider
time to detect the condition before it becomes too
severe. Note that our approach can be tailored to each
patient’s time to readmission characteristics, but
because of data scarcity, it is difficult tailor the delay-
time. If there were sufficient data, the delay-time could
also be personalized using the same method used to
personalize time to readmission predictions (Helm
et al. 2016).

5.3. Optimal Timing and Sequencing of Checkups:
Timing Outweighs Sequencing
Next, we explore the delay-time-spaced block struc-
ture shown by Proposition 1 and the optimal sequen-
cing of checkups in a more generalized scheme
involving 4–10 checkups in total with three office vis-
its. Though conducting ten checkups within a 30-day
period could be burdensome for both clinicians and
patients, the purpose here is to study 10-checkup poli-
cies as the extreme upper bound for the sake of com-
parison and completeness, and further investigate
the structure of checkup policies and their timing and
sequencing.
From Figure 6, we draw the following insights: (i)

checkups are scheduled in a contiguous block sur-
rounding the mode of the time-to-develop the condi-
tion distribution with spacing approximately equal
to the mean delay time. Slightly wider spacing is
observed around the perfect checkups and the spa-
cing increases as the probability of developing the
condition decreases; and (ii) consecutive perfect
checkups are placed surrounding the mode of the
time-to-develop the condition curve (i.e., put the best
checkups in the most hazardous period).
Although optimal policies favor consecutive per-

fect checkups around the mode, it is sometimes
impractical to schedule them consecutively in a short
period of time; particularly because many patients
may live far from the hospital where their initial
treatment occurred, making frequent travel to the

Figure 5 Fitted Time-to-Readmission and Recovered Time-to-Develop the Condition for 2010 SID Patients [Color figure can be viewed at wileyonli-
nelibrary.com]

Note. Time-to-readmission q � gamma(2.50, 4.80), time-to-develop the condition d � gamma(1.81, 5.08).
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hospital difficult or impossible. Fortunately, we find
that, as long as the timing is optimal, the policies are
robust to sequencing; that is, the gaps between the
worst-case and the best-case sequences for all poli-
cies in our test suite (1–10 checkups consisting of 0–3
office visits and phone calls) ranged between 0.2%
and 0.5%, indicating that the timing of checkups is
much more important than the sequencing. One way
to explain why sequencing is less important is that
the optimization will mimic a perfect checkup by
scheduling multiple imperfect checkups closer
together. For example, three phone calls of detection
rate 0.6 (made at once) have an equivalent detection
rate of 1 � 0.43 = 0.94. We conjecture that, by strik-
ing a balance between the spacing of checkups and
the effective detection rate, the sub-optimal sequen-
cing can mimic the behavior of the optimal sequen-
cing. The robustness to sequencing is a valuable
property: as the number of checkups increases, the
number of permutations of checkup sequences
becomes large (e.g., the 10-checkup policy in Figure 6

has ð 10
3
Þ ¼ 120 sequences), requiring a significant

amount of computational power to obtain an optimal

solution. Results from the sequencing analysis, how-
ever, generate near-optimal policies by fixing the
checkup sequence that is convenient for the physician
and the patient and then optimizing the timing of
checkups. This also allows for accommodating physi-
cian and patient preferences with little degradation in
performance.

REMARK 8. (MULTI-MODAL TIME-TO-DEVELOP THE CONDITION

DISTRIBUTIONS). In Appendix E, we test our model
numerically using a multi-modal time-to-develop
the condition distribution estimated using a Gaus-
sian Kernel Density Estimator. We show that
checkup policies can still be solved numerically to
optimality and the differences in optimal detection
probabilities are within 2%.

5.4. Impact of Detection Rate on Timing: Greater
Coverage with Better Checkups
In this section, we study the impact of varying the
detection probability of an imperfect checkup, r, and
extend the insight drawn from Theorem 1 using a
realistic potential monitoring schedule (according to

Figure 6 Optimal n-Checkup Sequencing and Timing, n 2 {4, . . ., 10}: Consecutive Perfect Checkups Appear Around the Mode of gd(�)

Notes. Assumptions: D � exponential(2.35); r of perfect checkups = 1, r of imperfect checkups = 0.6; the left axis denotes the probability density; the
right axis denotes the number of checkups. The detection probabilities are 0.40, 0.43, 0.46, 0.48, 0.50, 0.52, and 0.54, respectively (from bottom to top).

Figure 7 Optimal Checkup Timings under Different Detection Rates: Checkups are Placed in a Contiguous Block and Move Farther Apart as the
Detection Rate Increases

Notes. Assumptions: D � exponential(2.35), number of checkups = 10. The detection probabilities are 0.31, 0.41, 0.50, 0.57, and 0.64, respectively
(from bottom to top).
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our clinical collaborator) of one office visit and nine
phone calls. While this scenario is more aggressive
than current practice, it is still reasonable because
phone calls can be done cost-effectively using nurses,
trained technicians, or even automated call systems
(see www.cloud9hcs.com and Tagliente et al. 2016).
Results are presented in Figure 7.
In Figure 7, the spacing between checkups

increases as the detection rate improves. This aligns
with Theorem 1 and our intuition: more accurate
checkups can be spread farther apart; whereas less
accurate checkups should be placed closer together
to account for the higher probability that the condi-
tion is missed by previous checkups. With more
accurate checkups, the associated larger spacings
will cover a longer time period. Since checkups are
scheduled less frequently, patients and family
members are less likely to be inconvenienced. For
example, too much contact may lead patients to
become irritated, ignore phone calls, or not con-
sider questions as attentively. Another benefit is
that by covering a longer time period, there is
increased ability to detect potentially developing
conditions. Finally, the extended monitoring period
may help patients feel that they are receiving better
attention/care, which can build trust between the
patient and clinician, thereby improving patient
satisfaction.

5.5. Marginal Benefits of Increasing Checkup
Quantity vs. Improving Checkup Quality:
Quantity Outweighs Quality
Since scheduling frequent follow-up office visits
will increase the burden on frequently heavily
loaded clinician schedules (Baron 2010), in this sec-
tion, we consider the value of doing more phone
calls as a substitute for office visits. Importantly for
the clinical community, we find that checkup quan-
tity is more important than quality; that is, multiple

phone calls function as a good substitute for office
visits.
In our first experiment, we study optimal checkup

policies that have a total number of checkups between
one and ten with zero to three office visits.
As shown in Figure 8, both increasing the number

of checkups and increasing the number of perfect
checkups improves the detection probability. How-
ever, we find that adding one additional phone call is
nearly as effective as switching one phone call to an
office visit. In our test suite where 1–10 checkups con-
sisting of 0–3 office visits and phone calls were opti-
mized, scheduling one additional phone call increases
the detection probability by an average of 3.35%
whereas replacing a phone call with an office visit
(and rerunning the optimization) increases the detec-
tion probability by 3.45%. We also calculated the min-
imum number of additional phone calls needed to
outperform replacing a phone call with an office visit.
Across our test suite, on average, an office visit (r = 1)
can be replaced with 2.57 phone calls (r = 0.6). Fur-
ther, when the total number of checkups is less than
five, an office visit can be replaced with two phone
calls.
This result is highly valuable from the practical per-

spective, as phone calls are significantly less resource-
intensive than office visits for both patients and
physicians. Notice that phone calls have numerous
benefits over office visits: (i) patients may be located
far from the clinic and may have limited mobility and
transportation options; (ii) making an office visit is
burdensome as the capacity of the clinic and physi-
cians’ time are limited; and (iii) making phone calls
can be done efficiently through specialized call cen-
ters or physicians’ nursing or auxiliary staff in their
spare time. The key finding is that an effective
checkup policy can leverage these inexpensive phone
calls to achieve similar results as those obtained with
the more expensive and inconvenient office visits.

Figure 8 Detection Probability of n-Checkup Policies with 0–3 Perfect Checkups: Conducting More Imperfect Checkups is Better Than Replacing 1
Imperfect Checkup with 1 Perfect Checkup; a Perfect Checkup Can Be Replaced with 2.57 Imperfect Checkups with 0.6 Detection Rate
[Color figure can be viewed at wileyonlinelibrary.com]

Note. Assumptions: D� exponential(2.35), r of perfect checkups = 1, r of imperfect checkups = 0.6.
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5.6. The Benefit of Improving the Efficacy of
Phone Calls
One strong interest in efforts at readmission reduction
lies in designing effective questionnaires for phone
and telemedicine checkups (see, e.g., readmission
reduction startup company Cloud9, which has devel-
oped detailed questionnaires for many conditions,
www.cloud9hcs.com) and testing predictive models
based on historical responses to survey questions.
Design of such questionnaires to effectively target the
main causes of readmission (as an example for cystec-
tomy, five main conditions account for almost all of
the readmissions) can increase the detection probabil-
ity of a phone call. These questionnaires are particu-
larly easy to implement if the call is being conducted
by someone who is not the physician or, or if it is con-
ducted by an automated call system. To determine
the importance of such improvements and subse-
quently the amount of effort that should be expended
to perfect such surveys, we analyzed the impact of the
detection probability, r, on the efficacy of a monitor-
ing schedule.
Figure 9 shows that, as might be expected, the bene-

fit of replacing a phone call with an office visit dimin-
ishes as the detection rate improves. To analyze the
overall impact, we developed a test suite, where poli-
cies consisting of 10 checkups with 0–3 office visits
were optimized. We incremented the detection rate
from 0.2 to 0.8 (with a step size of 0.2), with 0.2 and 0.8
functioning as extreme lower/upper bounds for the

sake of comparison and completeness. We started by
computing the detection probability as a function of
the detection rate of the phone calls. We then estimated
(i) the improvement in detection probability achieved
by upgrading an existing phone call to an office visit;
and (ii) the improvement in detection probability
achieved by increasing the detection rate of the phone
calls. Finally, we computed the relative effectiveness of
increasing the phone call detection rate by 20% (com-
pared to upgrading an existing phone call to an office
visit). A relative effectiveness of 100% means that
increasing the phone call detection rate by 20% is as
effective as upgrading a phone call to an office visit.
Across this test suite, on average, increasing the

detection rate by 20% absolutely (e.g., 0.2 ? 0.4)
achieves 29%–70% (average = 47%) of the benefit
achieved by replacing a phone call with an office visit
(see detailed computation in Appendix J). The follow-
ing table shows the relative effectives.
The relative marginal benefit of increasing the

detection rate is greater when the detection rate is low
and the number of office visits is few (see Table 2).
Notice that the relationship is not linear (plausibly
concave as shown in Figure 9). The intuition is that the
effort required to improve checkup policies increases
as the policies get more aggressive and effective.
The practical implication suggests that physicians

can benefit significantly by designing more effective
phone call questionnaires, which may be used to help
replace excessive or burdensome office visits. Increas-
ing the detection rate of phone calls may be achieved
by providing patient education upon hospital dis-
charge (e.g., informing patients of symptoms that
indicate worsening conditions), ensuring that the con-
tent of post-discharge questionnaires are tailored as
much possible to individual patients and their per-
sonal characteristics (which can be identified with
readmission risk models at the time of discharge),
and targeting high risk conditions (e.g., infection,
dehydration, kidney failure, failure to thrive) with
focused questions.

Figure 9 Detection Probability as a Function of Detection Rate: 20% Absolute Improvement in Detection Rate Achieves 29%–70% (average = 47%)
of the Benefit Achieved by Upgrading an Imperfect Checkups to a Perfect Checkup [Color figure can be viewed at wileyonlinelibrary.com]

Note. Assumptions: D � exponential(2.35) with 10 checkups.

Table 2 Relative Effectiveness of Increasing Phone Call Detection
Rate with Respect to Replacement of a Phone Call with an
Office Visit

No. of office
visits∖Phone
call detection rate 0.2 ? 0.4 0.4 ? 0.6 0.6 ? 0.8

0 ? 1 58% 63% 70%
1 ? 2 41% 46% 50%
2 ? 3 35% 29% 31%
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5.7. Out-of-Sample Testing on a Separate Dataset
and Solution Robustness
To validate and test our models, we parameterized
our delay-time random variable using the first data-
set from our partner hospital for radical cystectomy
patients. We then estimated the time-to-readmission
by fitting a gamma distribution (best fit) to the 2010
SID dataset, also for radical cystectomy patients.
Using our inverse Laplace transform method, we
were able to recover the distribution on the time-to-
develop the condition. Finally, we generated an opti-
mal monitoring schedule based on the dynamics
obtained from combining our partner hospital delay-
time data with the 2010 SID readmission data. We
then tested this policy on a new dataset, 2009 SID
data, comparing our checkup times to the readmis-
sions for cystectomy patients across five states in
2009. To do so, we consider two methods. In both
methods, we begin by determining the optimal pol-
icy with parameters estimated from 2010 SID data.
Method 1: We compare the performance of the opti-
mal policy from 2010 data when applied to a time-
to-readmission curve estimated from the 2009 data
vs. the policy that optimizes according to the true
2009 time-to-readmission curve. We can then com-
pare the optimality gap caused by errors in

estimation of the time-to-readmission curve. Method
2: We apply the 2010 optimal policy to all the cystec-
tomy patients from 2009 SID data and estimate the
performance using each patient’s actual readmission
time and calculating the probability that his/her
delay-time was long enough such that one of the
inspections from our optimal policy would have
caught the condition before it caused a readmission
(see Appendix K for details).
Method 1 is shown in Figure 10. The detection

probabilities range from 0.1 to 0.5 and are very close
to the detection probabilities using a time-to-readmis-
sion curve estimated with the 2009 data itself (in-sam-
ple). The absolute optimality gaps were less than 5%
(see Appendix L). We also calculated the relative opti-
mality gaps and switched the testing and training sets
to further validate the findings (see Appendix M. The
largest relative optimality gaps were observed in one-
checkup models, which are not advisable in practice.
As the number of checkups increases, the relative
optimality gap diminishes. This indicates that the
model becomes more robust as the number of check-
ups increases, providing more support for the idea
that quantity of checkups is highly important. Practi-
cally speaking, not only does larger quantity elimi-
nate the need for excessive office visits, it also

Figure 10 Detection Probability of Checkup Policies with 0–3 Perfect Checkups Tested on 2009 SID Patients (Method 1) [Color figure can be viewed
at wileyonlinelibrary.com]

Figure 11 Proportion of Conditions Captured by the Optimal Policy with 0–3 Perfect Checkups Obtained, Using 2010 SID Patients and Tested on
2009 SID Patients (Method 2) [Color figure can be viewed at wileyonlinelibrary.com]
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increases the robustness of the solution to errors in
estimation.
Method 2 evaluates how well the optimal policy

would have performed in practice if implemented on
the radical cystectomy patients from the 2009 SID
data. Figure 11 presents the results of this study, indi-
cating that the optimal policies estimated from 2010
SID data would in fact have been highly effective if put
into practice on the patients of the out-of-sample data-
set. In particular, the estimated detection probabilities
(based on actual readmission times) are greater than
60% using one or more perfect checkups on the 2009
SID patients. It is worth highlighting the difference
between Methods 1 and 2 (i.e., Figure 8 vs. Figure 11):
in Figure 8, we were plotting the objective function,
which is parameterized with gamma and exponential
distribution curves fitted from the training dataset.
However, in Figure 11, we were plotting a different
objective, which uses the actual time to readmission
observations combined with the delay-time distribution
function plus the discrete observations (see Appendix
K for more details).
This improved performance seems to stem from the

fact that the true time-to-readmission for cystectomy
patients tends to be more heavily front-loaded in the
first 7–8 days than the fitted gamma distribution.
Another fact that contributed to this higher perfor-
mance is that the time to readmissions we used are in
days (discrete) rather than time (continuous). Using
discrete data created a lumping effect and lead to
improved performance. We are unable to use the
exact time of readmission (continuous data) to vali-
date our model as it is protected information and
could be used to identify patients. Moreover, since
the optimal policies tend to also bunch a number of
checkups soon after patient discharge, this policy
ends up actually detecting more conditions in practice
than would have been estimated by the fitted gamma
distribution for time-to-readmission.
As a further benefit revealed by this study (seen in

Figure 11), it appears that one office visit along with a
few phone calls is sufficient to capture much of the
value of post-discharge checkups. This is good news
for busy clinicians concerned about the added burden
of increased checkups.

5.8. Design of Practical Post-Discharge Checkup
Policy
Combining the insights drawn from our analytical
and numerical analyses, we provide the following
rules of thumb to facilitate the design of post-
discharge checkup policies.

• Timing of checkups outweighs sequencing:
(i) schedule checkups in a block surrounding
the most-likely time (mode) of developing a

condition; (ii) keep the time between checkups
close to the expected delay-time; (iii) office vis-
its should be scheduled near the time of high-
est risk of readmission for the patient.

• Cover a longer time period and reduce office
visits with better checkups: Improving the
quality of phone call checkups (e.g., better
questionnaires, patient education) allows the
checkup team to (i) cover a longer time period
with less frequent calls (better for patients and
detects more potential conditions), (ii) reduce
the number of office visits without reducing
readmission detection (better for patients, clini-
cians, and healthcare organizations). Further,
helping to standardize patient behavior at
home, thereby reducing delay-time variance,
has added detection benefits.

• Quantity of checkups outweighs quality:
Multiple imperfect checkups serve as a good
substitute for office visits; that is, making more
phone calls can be nearly as effective as replac-
ing a few phone calls with office visits. Fur-
ther, the larger the quantity of checkups, the
more robust the solution is to errors in estima-
tion/optimization.

In practice, hospitals could use the following steps
to design better post-discharge monitoring policies:
(i) estimate the time-to-develop the condition and the
delay-time; (ii) design an effective phone call ques-
tionnaire; (iii) schedule checkups in a block with spac-
ings approximately equal to the mean delay-time; (iv)
schedule office visits (perfect checkups) close to the
time at which patients are at the highest risk of read-
mission; (v) spread phone calls farther apart from
each other to cover a longer time period with
improvements on the phone call questionnaires.

6. Discussion and Conclusions

In this study, we address the prevalent issue of hospital
readmissions that concerns healthcare professionals,
hospital patients, and policy makers. We propose an
analytical model based on delay-time analysis to
design more effective post-discharge checkup poli-
cies for individual patients. Key results from our
model not only provide theoretical extensions of the
traditional delay-time analysis framework, but also
important insights for healthcare decision makers
designing post-discharge checkup policies. By simul-
taneously optimizing with respect to multiple fac-
tors such as the number of checkups, the timing of
checkups, and the types of checkup methods used,
our model demonstrates significant improvements
over current practice. Using the same number of
checkups, current practice (which detects only 16%
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of the conditions experienced by readmission-bound
patients) can be improved up to 23%, a relative
improvement of 43.7%.
Future extensions upon this research may involve

examining the benefit of detecting illnesses as early as
possible. The current model assumes equal benefit
from all early illness detections, however, it may be
valuable to assign more benefit to earlier detections as
they may result in less burden on the patients. Simi-
larly, the current model also assumes that checkups
have constant detection rate over the duration of a
patient’s readmission-causing condition. It may be
valuable to examine the effect of time-dependent
detection rate of phone calls, for example, the detec-
tion rate becomes higher as the patient has had the
condition for a longer time. Another extension is to
jointly optimize discharge (inpatient) and post-
discharge (outpatient) decisions as the timing of dis-
charge can affect readmission risk (Kelly et al. 2015,
Rosen et al. 2017). While parameterizing our model
with real data, we realized that empirical estimation
could be challenging as our model requires two distri-
butions (time-to-develop the condition and delay-
time) as the input. One of the key empirical challenges
is the issue of censoring, as we only utilized data
within the finite 30-day readmission penalty window.
In addition, patients have different intrinsic readmis-
sion risk: while some patients would not be readmit-
ted, other patients would be readmitted regardless of
post-discharge monitoring and interventions. Though
the two distributions (and data beyond 30-day follow-
up) are not widely available currently, we believe that
our analysis will motivate the documentation and uti-
lization of the delay-time and time-to-develop the
condition information. We leave to future work the
personalized delay-time and time-to-develop the con-
dition forecast as well as more robust empirical esti-
mation that considers the censorship of data.
The application of our model and findings has the

potential for broad impacts including reduced hospi-
tal readmissions, improved quality of patient care,
improved patient satisfaction, and reduced healthcare
costs, all without overburdening clinicians (as clini-
cian burden is often a major barrier to implementation
of new healthcare practices). This is achievable by
aligning checkup policy design with a number of key
insights, namely: timing of checkups is the most
important factor, checkup timing should be adjusted
according to checkup detection rates, and checkup
quantity is more important than checkup quality. At
the same time, our model presents unique extensions
to the traditional delay-time analysis framework by
allowing for a time-varying failure rate and inhomo-
geneous detection rate. Thus, our model extends the
scope of delay-time modeling and provides new
insights into the structure of these types of problems.

This ultimately broadens the scope of problems in
which delay-time analysis can be applied.
Tested on an out-of-sample dataset containing 332

patients from the states of Florida, Iowa, North Caro-
lina, New York, and Washington, our results de-
monstrate robustness, with absolute optimality gaps
within 5%. As the number of checkups increases, the
robustness further increases as the optimality gaps
diminish. Our clinical collaborators have shown great
interest in implementing our models and look for-
ward to putting them through clinical testing. Going
beyond cystectomy patients, the new framework
developed has the potential to significantly reduce
readmissions from a variety of surgical procedures,
thereby improving the quality of patient care and
decreasing healthcare costs.
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